245 research outputs found

    Effects of bottom trawling on fish foraging and feeding

    Get PDF
    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries

    Accurate measurements of small currents using a CCC with DC SQUID read out

    Get PDF
    The continuous miniaturisation in the semiconductor industry increases the importance of accurate measurement and control of very small currents. In the field of precision electrical measurements, cryogenic current comparators (CCCs) are used as extremely sensitive and accurate instruments for scaling currents. In an international co-operation project, a special CCC system is being developed, optimised for the measurement of extremely small currents to less than 1 pA (10−12 A). DC superconducting quantum interference device (SQUID) readout is used for monitoring the ampere-turn unbalance of the CCC. In this paper, we report on the accurate determination of the CCC and SQUID input coil inductances. Matching of these inductances is required for obtaining ultimate current resolution with the CCC. We find very good agreement between measurements of the CCC inductance at room temperature and at 4.2 K, and results from numerical calculations. The measured values for the input and mutual inductance of the SQUID sensor are in good agreement with the design values when the effect of the slit in the SQUID washer is correctly taken into account. Final current resolution of our measurement system is expected to be better than 1×10−15 A/√Hz for a CCC with 20,000 primary windings

    Differences in demersal community structure and biomass size spectra within and outside the Maltese Fishery Management Zone (FMZ)

    Get PDF
    We examined the protection effect of a long-established fisheries protection zone by studying the demersal communities and the biomass size spectra of specific taxonomic groups. The results and the relevant management implications of the community analysis are discussed within the context of the MEDITS trawl survey program, from which the data was derived. The demersal fishery resources on the muddy bottoms of Maltese trawling grounds were found to be stratified in four main depth ranges: 83 to 166 m (outer continental shelf), 140 to 230 m (shelf break), 270 to 440 m (shallow slope), and 466 to 701 m (deep slope). Significant differences were detected between the inside and outside zones of the outer continental shelf. Stations from this stratum inside the protected zone had twice as much biomass as those outside as well as larger individuals of some species (e.g. elasmobranchs). The depth strata identified do not coincide with those sampled in existing trawl survey programmes in the Sicilian Channel, which were set up without reference to demersal assemblage structure and its relation to depth. It is therefore clear that characterisation of the biotic assemblages is important in order to obtain a better sampling representation of each depth-stratum/assemblage type, and this should be considered in the survey design.peer-reviewe

    Stable isotope signatures reveal small-scale spatial separation in populations of European sea bass

    Get PDF
    Scientific information about European sea bass (Dicentrarchus labrax) stocks in NE Atlantic is limited and a more accurate definition of the stock boundaries in the area is required to improve assessment and management advice. Here we study the connectivity and movement patterns of European sea bass in Wales (UK) using the stable isotope (δ13C and δ15N) composition of their scales. Analysis of fish scale δ13C and δ15N values in the last growing season was performed on 189 adult sea bass caught at nine coastal feeding grounds. Fish >50 cm total length (TL) caught in estuaries had very low δ13C and this is characteristic of fresh water (organic/soil) input, indicating the primary use of estuaries as feeding areas. A random forest classification model was used to test if there was a difference in δ15N and δ13C values between north, mid and south Wales and whether it was possible to correctly assign the fish to the area where it was caught. This analysis was restricted to fish of a similar size range (40-50 cm TL) caught in open coastal areas (n=156). The random forest classification model showed that about 75% of the fish could be correctly assigned to their collection region based on their isotope composition. The majority of the misclassifications of fish were fish from north Wales classifying to mid Wales and vice versa, while the majority of fish from south Wales were correctly assigned (80%). Our findings suggest that two sub-populations of sea bass in Welsh waters use separate feeding grounds (south vs. mid/north Wales), and may need separate management

    Adapting the SLIM diabetes prevention intervention to a Dutch real-life setting: joint decision making by science and practice

    Get PDF
    Background - Although many evidence-based diabetes prevention interventions exist, they are not easily applicable in real-life settings. Moreover, there is a lack of examples which describe the adaptation process of these interventions to practice. In this paper we present an example of such an adaptation. We adapted the SLIM (Study on Lifestyle intervention and Impaired glucose tolerance Maastricht) diabetes prevention intervention to a Dutch real-life setting, in a joint decision making process of intervention developers and local health care professionals. Methods - We used 3 adaptation steps in accordance with current adaptation frameworks. In the first step, the elements of the SLIM intervention were identified. In the second step, these elements were judged for their applicability in a real-life setting. In the third step, adaptations were proposed and discussed for those elements which were deemed not applicable. Participants invited for this process included intervention developers and local health care professionals (n=19). Results - In the first adaptation step, a total of 22 intervention elements were identified. In the second step, 12 of these 22 intervention elements were judged as inapplicable. In the third step, a consensus was achieved for the adaptations of all 12 elements. The adapted elements were in the following categories: target population, techniques, intensity, delivery mode, materials, organisational structure, and political and financial conditions. The adaptations either lay in changing the SLIM protocol (6 elements) or the real-life working procedures (1 element), or a combination of both (4 elements). Conclusions -he positive result of this study is that a consensus was achieved within a relatively short time period (nine months) between the developers of the SLIM intervention and local health care professionals on the adaptations needed to make SLIM applicable in a Dutch real-life setting. Our example shows that it is possible to combine the perspectives of scientists and practitioners, and to find a balance between evidence-base and applicability concerns

    Estimating effective detection area of passive, static acoustic data loggers from playback experiments with cetacean vocalisations

    Get PDF
    The study was funded by the Federal Ministry for the Environment, Nature conservation and Nuclear Safety of Germany (FKZ: 0325238), Bangor University and supported by SeaMôr Wildlife Tours.1. Passive acoustic monitoring (PAM) is used for many vocal species. However, few studies have quantified the fraction of vocalisations captured, and how animal distance and sound source level affect detection probability. Quantifying the detection probability or effective detection area (EDA) of a recorder is a prerequisite for designing and implementing monitoring studies, and essential for estimating absolute density and abundance from PAM data. 2. We tested the detector performance of cetacean click loggers (C-PODs) using artificial and recorded harbour porpoise clicks played at a range of distances and source levels. Detection rate of individual clicks and click sequences (or click trains) was calculated. A Generalised Additive Model (GAM) was used to create a detection function and estimate the effective detection radius (EDR) and EDA for both types of signals. 3. Source level and distance from logger influenced the detection probability. Whilst differences between loggers were evident, detectability was influenced more by the deployment site than within-logger variability. Maximum distance for detecting real recorded porpoise clicks was 566 m. Mean EDR for artificial signals with source level 176 dB re 1 μPa @ 1m was 187 m., and for a recorded vocalisation with source level up to 182 dB re 1 μPa was 188 m. For detections classified as harbour porpoise click sequences the mean EDR was 72 m. 4. The analytical methods presented are a valid technique for estimating the EDA of any logger used in abundance estimates. We present a practical way to obtain data with a cetacean click logger, with the caveat that artificial playbacks cannot mimic real animal behaviour and are at best able to account for some of the variability in detections between sites, removing logger and propagation effects so that what remains is density and behavioural differences. If calibrated against real-world EDAs (e.g., from tagged animals) it is possible to estimate site-specific detection area and absolute density. We highlight the importance of accounting for both biological and environmental factors affecting vocalisations so that accurate estimates of detection area can be determined, and effective monitoring regimes implemented.PostprintPeer reviewe

    Differences in biological traits composition of benthic assemblages between unimpacted habitats

    Get PDF
    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient

    Different bottom trawl fisheries have a differential impact on the status of the North Sea seafloor habitats

    Get PDF
    Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 χ 1 min latitude and longitude (~2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten métiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.</p
    corecore